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Abstract. In this work we present a complete orthogonal factorization method that takes advantage of
the structure and numerical properties in sparse, rank deficient, overdetermined systems arising in bistatic
target strength prediction models. The sparse overdetermined matrices in these models belong to a class
called row-bordered block diagonal matrices. Applying this decomposition method to highly ill-conditioned
bistatic target strength prediction models, we have obtained at least ten (10) fold improvement over the
compute time required by the linear algebra package LAPACK for a range of models. Further speedups
can be realized by exploiting parallelism inherent in the models. Algorithmic speedups of this magnitude
will enable the extension of the frequency range in bistatic target strength prediction models to regions of
greater interest to the Navy. All computer runs were done on the NCCOSC RDT&E Division Convex
Exemplar.

1. Introduction. Knowledge of bistatic target strength is of increasing importance in sonar systems.
Full-scale measurements of monostatic target strength are expensive and difficult, and become impractical
for general bistatic geometries.  Usually one is limited to measurements at a limited number of monostatic
angles and perhaps a few bistatic angles in a single plane. Extending the value of this measured data by
using it to estimate the full bistatic target strength pattern is extremely desirable. Previous efforts to do this
have severe limitations or restrictions in their applicability.

A method has been developed [1] that relies on measured monostatic and limited bistatic data, and uses
a numerical model to estimate the surface field and propagate it to the farfield for full bistatic geometries.
The crux of this method is to construct the farfield propagator matrix that relates the farfield scattered
pressures to some surface quantity.  A singular value decomposition of the propagator matrix is used to
eliminate nonradiating surface modes. Then the radiating part of the surface values is determined by least
squares approximation from knowledge of the measured monostatic and limited bistatic scattering data and
from the principle of reciprocity, that requires the scattering matrix to be symmetric. The least squares
problem involves a large, sparse, rank deficient matrix. Although the solution of this least squares problem
is nonunique, it appears that the minimum norm solution gives good results when the surface values are
used to reconstruct the full bistatic scattering pattern. Available conventional algorithms, such as those
contained in LAPACK, deal with the rank deficiency, but take no advantage of the sparsity. Therefore, they
are very time consuming, and this severely limits the frequency range of applicability.

2. Sparsity structure of matrix in the bistatic target strength prediction model. Large sparse
overdetermined systems of equations Mx = b arise in numerous scientific and engineering applications. In
the bistatic target strength prediction (btsp) model, the sparse overdetermined matrix M is rank deficient ,
and also, for some permutation matrix P, PM is a 2-by-1 block matrix
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where T11 is an r-by-r upper triangular matrix and nonsingular. Making use of this relation in QTMS gives
the so-called complete orthogonal factorization
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In terms of the orthogonal matrices Q and Z and the permutation matrix S, the overdetermined system Mx
= b has the equivalent form

(QTMSZ)(ZT ST x) = (QTb).

Combining these last two equations gives

x = SZ T11
− 1c
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which is the minimum norm solution to the rank deficient linear least squares problem as computed in
LAPACK [3].

4. A linear least squares solution that takes advantage of block diagonal form of A. When QR
factorization with column pivoting is applied to the row-bordered block diagonal matrix PM, the leading
block A in PM loses its block diagonal form after only a few Householder updates. This deformation in the
block diagonal form of A is a direct consequence of the fact that each row and each column in every block
of the 1-by-k block matrix G in PM contains at least one nonzero entry.

In this section, we present a method that takes advantage of the block diagonal form of A to compute a
linear least squares solution of the overdetermined system Mx = b. The first and initial step uses QR
factorization with column pivoting to factorize each of the k rank deficient diagonal blocks of A
individually. At the completion of this step, we obtain an orthogonal (or unitary) matrix Q(i) and an n-by-n
permutation matrix S(i) such that

AiiS
(i ) = Q( i ) U11

(i ) U12
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where U11
(i)  is an si-by-si nonsingular upper triangular matrix with si = rank(Aii), for i = 1,..., k. If block Aii

is of full rank, then we have

AiiS
(i ) = Q(i ) U11

( i )
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Since the original matrix M in the btsp model is rank deficient, at least one diagonal block of A must be
rank deficient. In practice, we have observed that each and every diagonal block of A is rank deficient, and
so we will assume henceforth that all diagonal blocks of A are rank deficient.

Let us define
                                                                                          G1iS

( i ) = U21
(i ) U22

( i)( ),                                                                i = 1,..., k,

and use the orthogonal matrices Q(i) and permutation matrices S(i)  to form the following matrices
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